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We extend the collective atomic recoil lasing(CARL) model including the effects of friction and diffusion
forces acting on the atoms due to the presence of optical molasses fields. The results from this model are
consistent with those from a recent experiment by Kruseet al. [Phys. Rev. Lett.91, 183601(2003)]. In
particular, we obtain a threshold condition above which collective backscattering occurs. Using a nonlinear
analysis we show that the backscattered field and the bunching evolve to a steady state, in contrast to the
nonstationary behavior of the standard CARL model. For a proper choice of the parameters, this steady state
can be superfluorescent.
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The mechanical effect of light on atoms has now been the
subject of intense theoretical and experimental research ef-
forts for several decades. However, the fact that the collec-
tive atomic center-of-mass motion of atoms can strongly in-
fluence the evolution of optical fields has only received
attention relatively recently[1–4]. Recent experimental stud-
ies involving large numbers of cold atoms in high quality
cavities [5–7] represent an important advance in this field,
allowing detailed experimental studies of collective atom-
light interaction dynamics. During these interactions both the
mechanical effect of the cavity modes on the atomic motion
and the driving of the cavity modes by the dynamic spatial
distribution of atoms in the cavity must be described self-
consistently and cannot be considered independently.

A recent experiment by Kruseet al. [5] represents the
unambiguous realization of the collective atomic recoil las-
ing (CARL) model originally proposed by Bonifacio and co-
workers[1], which describes collective backscattering of an
optical pump field by a sample of cold atoms. Previous ex-
periments on CARL have been performed in hot atomic va-
pors [8,9] where, however, the gain of the backward field
cannot be unambiguously attributed to atomic recoil.

Here we extend the previous theoretical work on CARL,
including the effects of friction and diffusion forces acting on
the atoms due to the presence of optical molasses fields. We
describe the system using a set of coupled Maxwell-Fokker-
Planck equations. A linear stability analysis reveals that there
is a threshold condition for the pump power above which
collective backscattering occurs. Preliminary experimental
results confirm this prediction[10]. We further show that the
backscattered field and atomic density modulation amplitude
or “bunching” evolve to a steady state, in contrast to the
nonstationary behavior predicted by the standard CARL
model. Our model describes the main features of the experi-
mental results of Ref.[5].

In addition to the so-called “good-cavity” regime in which
the experiment of Ref.[5] operates, we also examine the
behavior of the system in the “bad-cavity” regime. We show
that in this regime the atoms emit in a superfluorescent way
[11], with scattered intensity~N2, whereN is the number of
atoms. This is a unique example of a steady-state superfluo-

rescence, i.e., superradiance from an incoherently prepared
atomic system.

Our system consists of an ensemble ofN atoms back-
scattering a far-detuned pump field into a counterpropagating
mode of a ring cavity, described by a set of equations derived
by Bonifacio and co-workers[1–3]. The equations are here
generalized to include a friction force −ḡp̄j and a stochastic
force Fjst̄ d, due to the presence of optical molasses:

du j

dt̄
= p̄j , s1d

dp̄j

dt̄
= − sAeiu j + c.c.d − ḡp̄j + Fjst̄ d, s2d

dA

d t̄
= ke−iul − KA, s3d

where j =1, . . . ,N, t̄=vrrt, u j =2kzj, p̄j =2kvzj/vrr, and A
=s2e0V/N"vrd1/2E are universally scaled time, position,
momentum, and scattered electric field variables, respec-
tively, normalized to the CARL bandwidth vrr
where vr =2"k2/m is the recoil frequency, r
=sV0/2Dd2/3svd2N/2V"e0vr

2d1/3~ sP0N/D2d1/3, V0 is the
Rabi frequency of the pump field with frequencyv=ck, de-
tuned from the atomic resonance byD=v−v0, d is the elec-
tric dipole moment of the atom,P0 is the intracavity pump
power, andV is the cavity mode volume. The average in Eq.
s3d is defined ask¯l=s1/Ndo j=1

N s¯d j. Finally, K=kc/vrr

represents scaled cavity losses andḡ=g f /vrr is the scaled
damping coefficient to account for molasses friction. With
the exception of the stochastic forceFjst̄ d, these equations
are similar to the ones used by Bonifacio and Verkerkf12g to
describe CARL including the effect of collisions.

Here, the stochastic forceFjst̄d causes diffusion of the
atomic momenta, i.e., heating. We assume white noise, i.e.,
kFjst̄ dFj8st̄ 8dl=2Dpd st̄− t̄ 8dd j j 8, whereDp= ḡs 2 is the mo-
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mentum diffusion coefficient ands is the momentum spread
in units of vrr, corresponding to the Doppler temperatureT
of the atoms in the molasses fields.

In the limit of strong viscous damping, it is possible to
adiabatically eliminate the atomic momentum for each atom
by settingdp̄j /d t̄=0 in Eq. (2), so that

p̄j = −
1

ḡ
sAeiu j + c.c.d +

Fjst̄ d

ḡ
. s4d

Before discussing the full model including diffusion, let us
consider the simple steady-state solution neglecting the sto-
chastic forceF. Assuming perfect bunching, i.e.,ke−iul
<e−ikul, Eqs.s3d and s4d yield f5g

a =
e−ikul

k − ikpl
, kpl = −

2k

k2 + kpl2 , s5d

where we have normalized all the variables in order to re-
duce the number of free parameters, defininga=A/Îḡ, p
=Îḡp̄=du /dt, t= t̄ /Îḡ, and k=ÎḡK. In the following we
will use these scaled variables and parameters.

From Eqs.(5) we can identify two different steady-state
regimes for CARL: whenk!1 (good-cavity limit), we ob-
tain ukplu<s2kd1/3@k and uau2<s2kd−2/3. From the defini-
tions of k anda, it follows that the scattered light powerPs
is proportional toN4/3 as in the usual CARL[1–3]. Con-
versely, fork@1 (bad-cavity limit) we obtainukplu!k and
uau2<1/k2, so that the scattered powerPs is proportional to
N2, i.e., issuperfluorescent.

Diffusion can be described, in the adiabatic limit of Eq.
(4), writing a Fokker-Planck equation for the distribution
function Psu ,td [13,14]. Together with Eq.(3), our model
becomes

] P

] t
=

]

] u
fsaeiu + c.c.dPg + D

]2P

] u 2 , s6d

da

dt
=E

0

2p

Psu,tde−iu du − ka, s7d

where D=ÎḡDu=s2/Îḡ~TsD2/g fNP0d1/2 and Du=s2/ ḡ is
the space diffusion coefficient. The distribution function
is normalized such thate0

2p Psu ,tddu=1 and is periodic in
u with period 2p. Hence Eqs.s6d ands7d can be written in
terms of the spatial harmonics ofPsu ,td, i.e., Psu ,td
=s1/2pdon=−`

` Bnstdeinu, where Bnstd=e0
2p Psu ,tde−inu du,

so that

dBn

dt
= insaBn−1 + apBn+1d − n2DBn, s8d

da

dt
= B1 − ka. s9d

We note thatB−n=Bn
p and B0=1. In particular, b= uB1u

= uke−iulu is the bunching factor, describing the ampitude of
the density grating. Moreover, from Eq.s4d it follows that
the average momentum iskpl=−2 ResaB1

pd.

In the following, we will show that diffusion is respon-
sible for the existence of a definite threshold for the steady-
state solution, for which in general the bunching factorb is
less than 1.

The system of Eqs.(8) and (9) have a steady-state solu-
tion with as0d=0 andBn

s0d=0 for nÞ0. If we linearize Eqs.
(8) and(9) around this steady state, we find that fluctuations
of a and Bn grow exponentially~expsltd if the dispersion
relation

sl + kdsl + Dd = i s10d

has roots with positive real parts. The real and imaginary
parts of the unstable mode of Eq.s10d gives the gainG and
the frequency shiftDv in the exponential regime, that, in
units of the cavity bandwidthkc, are

G

kc
=

Rel

k
=

1

k
FÎC2 + Î1 + C4

2
−

k + D

2
G , s11d

Dv

kc
=

Im l

k
=

1
Î2k

F 1

ÎÎ1 + C4 + C2G , s12d

whereC=sk−Dd /2. The threshold condition for instability
sGù0d gives rise to the following relation betweenk andD:

kDsD + kd2 ø 1. s13d

Figure 1 shows the regions of parameter spacesk ,Dd for
which Eq. (13) predicts unstable growth of the probe field
and the atomic density modulation.

We note that the frequency shift at threshold(i.e., G=0)
is, from Eqs.(11)–(13),

Dvth

kc
=ÎD

k
. s14d

The accessible parameters in the experiment of Kruseet
al. [5] are the pump power and the CARL frequency. The
minimum measured value of the frequency shift was
Dv /kc<4.6. Assuming that it corresponds to the threshold

FIG. 1. Region of instability as a function ofk and D (gray
area).

ROBB et al. PHYSICAL REVIEW A 69, 041403(R) (2004)

RAPID COMMUNICATIONS

041403-2



value of the frequency shift, then, using Eqs.(13) and (14)
we calculate that the values ofk and D at threshold arek
<0.1 andD<2.1. The experiment of Ref.[5] can therefore
be described using the good cavity limit wherek!1. In this
limit, the threshold condition Eq.(13) becomes simplyD
øk−1/3, and the frequency shift at threshold is approximately
Dv /kc<k−2/3<D2. Using the definition ofk, the threshold
value k=0.1 can be expressed as a threshold condition for
the pump power. Assuming the same parameters as in Ref.
[5], i.e., kc=s2pd22 kHz, g f =9kc and T<150 mK, we ob-
tain a CARL parameterr=14.6 at threshold, corresponding
to an intracavity pump power ofP0<3 W, in good agree-
ment with the experimental value.

The linear analysis can provide us with important infor-
mation on the scaling behavior of the threshold input pump
power and the frequency shift at threshold. Using the good-
cavity limit conditionDøk−1/3 and the scaling ofD andk,
the intracavity pump power scales as

P0 ~
T3/2D2kc

1/2

Ng f
1/2 . s15d

It is also worthwhile to investigate the scaling behavior of
the threshold pump power and the frequency shift at thresh-
old in the superfluorescent regime,k@1. Although to date
there have been no experimental studies which operate in
this regime, we can use our model to predict the behavior of
such an experiment. It should be noted that from an inspec-
tion of the region of instability shown in Fig. 1, in order to
operate in the superfluorescent regimeand remain above the
threshold for instability, it is necessary to increase scaled
cavity lossesk and decrease the scaled diffusion or tempera-
ture parameterD. In the bad-cavity limit the threshold con-

dition Eq. (13) becomes simplyDøk−3, and the frequency
shift at threshold is approximatelyDv /kc<k−2<D2/3. Con-
sequently the threshold pump power in the superfluorescent
regime scales as

P0 ~
T1/2D2kc

1/2g f
1/2

N
. s16d

Note that the dependence of threshold pump power on tem-
perature is now~T1/2 in the bad-cavity limit, as opposed to
~T3/2 in the good-cavity limit. The dependence onN andD
is the same as that for the good-cavity limit. Note that the
frequency shift at threshold scales asÎT/ sg fkcd in both lim-
its.

The numerical integration of Eqs.(8) and (9) shows that
the system evolves toward the stationary solution withassd

=aeivt (wherev=df /dt is the scaled frequency shift) and
Bn

ssd=bne
invt, wherea and bn are complex constants. As a

consequence, the density distribution moves at a constant
velocity, Psu ,td=Pssdsu+vtd. We note that at steady state
the average momentum iskpl=−2kb2/ sk2+v2d, where the
bunching parameter isb= ub1u. Comparing with Eq.(5), it
follows that in the case of perfect bunchingsb=1d v=−kpl.
Figure 2 shows the evolution of the backscattered scaled in-
tensityuau2 (a), and the bunchingb (b) as a function of scaled
time t for parameters close to those of the experiment by
Kruseet al., i.e., D=1.49, andk=0.075. The instability was
initiated using a seed fielda0=10−5.

It can be seen that the field intensity and the bunching
increase exponentially before relaxing to a steady state. This
is the same qualitative behavior as observed in the experi-
ment [5]. Figure 2(c) shows also the time evolution of the
frequency shiftDv /kc=v /k (continuous line) and of the
scaled mean velocity 2kkvzl /kc=kpl /k (dashed line). We ob-
serve that the atomic mean velocity at steady state does not
coincide with the velocity of the optical standing wave, i.e.,
−kplÞv, as occurs in the case of perfect bunchingb=1.
Finally, Fig. 2(d) shows the stationary distributionPsud vs u,
showing the density grating profile.

The steady-state solution of Eqs.(8) and (9) may be ob-
tained solving the following recurrence equation forbn:

sv − inDdbn = abn−1 + apbn+1, s17d

wherenÞ0 anda=b1/ sk+ ivd. Calculatingb1 in terms of a
continued fraction and iterating numerically the solution in
order to findv, the stationary solution can be obtained ex-
actly. As an example, Fig. 3sad shows the steady-state bunch-
ing b scontinuous lined and Fig. 3sbd shows −kpl /k scontinu-
ous lined and v /k sdashed lined as a function ofD and for
k=0.1. Weobserve that the bunching parameterb goes to
zero at the threshold valueDth=2.1, and thefrequency
shift at threshold isv=4.6k, in agreement with the results
of the linear theory. We note from Fig. 3sbd that −kpl
<v only well above threshold, whenD!Dth.

In the experiment of Ref.[5], the pump power is ramped
up and down, while the frequency shiftv /k is monitored.
The ramp can be designed in such a way that the pump
power crosses the threshold valuePT, so that we expect that

FIG. 2. Graph ofuau2 (a), b (b), v /k (continuous line) and
−kpl /k (dotted line) (c), vs t and of the stationary distributionPsud
vs u (d).
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the signal of powerPs of the scattered light beam has the
dependencies shown in Fig. 4. This behavior seems to be in
agreement with preliminary experimental results, to be dis-
cussed elsewhere[10].

In conclusion, we have presented a model of the recent
experiments by Kruseet al. [5] showing collective back-
scattering of an optical pump field by a sample of cold at-
oms. The model used is an adaptation of the CARL model
which includes the effects of friction and diffusion forces
acting on the atoms due to the presence of optical molasses
fields. Using this model, we show that the system can be
described by a system of coupled Maxwell-Fokker-Planck
equations. It was shown using a linear stability analysis that
there is a threshold condition above which collective back-
scattering occurs. Using a nonlinear analysis it was shown

that the backscattered field and atomic density modulation
amplitude or “bunching” evolves to a steady state, in contrast
to the nonstationary behavior observed using the usual
CARL model. We suggest to test our model experimentally
as well in the linear regime by searching for a threshold and
characterizing its dependence from the coupling parameter
and from temperature, as in the nonlinear regime. The ex-
periment currently operates in the so-called good-cavity re-
gime [5]. We furthermore propose to tune the experiment
into the bad-cavity regime in which the atoms scatter super-
fluorescently, with scattered intensity~N2.
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European Science Exchange Joint Project.
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FIG. 3. (a) Steady-state solution forb (continuous line). (b)
Steady-state solution forv /k (dashed line) and −kpl /k (continuous
line), as a function ofD for k=0.1.

FIG. 4. Graph of frequency shiftv /k (a) and scattered power
uau2 (b) as a function ofP0/PT, for kc=s2pd22 kHz, g f =9kc, and
T=150mK.
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