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We extend the collective atomic recoil lasif@ARL) model including the effects of friction and diffusion
forces acting on the atoms due to the presence of optical molasses fields. The results from this model are
consistent with those from a recent experiment by Kraseal. [Phys. Rev. Lett.91, 183601(2003]. In
particular, we obtain a threshold condition above which collective backscattering occurs. Using a nonlinear
analysis we show that the backscattered field and the bunching evolve to a steady state, in contrast to the
nonstationary behavior of the standard CARL model. For a proper choice of the parameters, this steady state
can be superfluorescent.
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The mechanical effect of light on atoms has now been theescence, i.e., superradiance from an incoherently prepared
subject of intense theoretical and experimental research eftomic system.
forts for several decades. However, the fact that the collec- Our system consists of an ensemble Mfatoms back-
tive atomic center-of-mass motion of atoms can strongly in-scattering a far-detuned pump field into a counterpropagating
fluence the evolution of optical fields has only receivedmode of a ring cavity, described by a set of equations derived
attention relatively recentlyl—4]. Recent experimental stud- py Bonifacio and co-workergl—3]. The equations are here
ies involving large numbers of cold atoms in high quality yeneralized to include a friction forceyp; and a stochastic

cavities[5-7] represent an important advance in this field,¢, 0o £ ) due to the presence of optical molasses:
allowing detailed experimental studies of collective atom- J

light interaction dynamics. During these interactions both the do.
mechanical effect of the cavity modes on the atomic motion | =pi, (1)
and the driving of the cavity modes by the dynamic spatial a

distribution of atoms in the cavity must be described self-
consistently and cannot be considered independently.

A recent experiment by Kruset al. [5] represents the % AL — —
unambiguous realization of the collective atomic recoil las- dT_ (A€ +c.c) = yp; + Fi(t), 2
ing (CARL) model originally proposed by Bonifacio and co-
workers[1], which describes collective backscattering of an
optical pump field by a sample of cold atoms. Previous ex- dA_ .,
periments on CARL have been performed in hot atomic va- d_T_ (e™) - KA, ©)

pors [8,9] where, however, the gain of the backward field
cannot be unambiguously attributed to atomic recoil.

Here we extend the previous theoretical work on CARL’:(Ze V/Nhwp)l2E are universally scaled time, position
including the effects of friction and diffusion forces acting on 0 t P d ttered electric field . b’l ’
the atoms due to the presence of optical molasses fields. V\?Igomen um, and scatlered €lectric Tield variables, respec-

describe the system using a set of coupled MaxweII-Fokker\-NVhe;)r/é r;or_rgzléleg] ti(; t?hee Crgsol_il bffgdt\fg?lt:h @p
Planck equations. A linear stability analysis reveals that there I3, 9 . P

< 2/3 2 2\1/3 2\1/3 H
is a threshold condition for the pump power above which_ {20/ 28) "X @d"N/2Vhegwr) = (PoN/AF)TE, g is the

collective backscattering occurs. Preliminary experimentaFab' frequency of the pump field with frequer!agzck, de-
results confirm this predictiofi0]. We further show that the qned_ from the atomic resonance byﬂw—q)o, dis t.he elec-
backscattered field and atomic density modulation amplitudérIC dipole mqmﬁnt of 'the aton®y :S the m;racawty pump
or “bunching” evolve to a steady state, in contrast to thePOWer, an_d\/ Is the calnty mOdﬁ Vo ume._T € ave_rage in Eq.
nonstationary behavior predicted by the standard cARL3 is defined a‘c‘")‘,(l/N)EFl(”_')i' Flnally, K=kl wrp
model. Our model describes the main features of the experf€Presents scaled cavity losses aywly/ wp is the scaled
mental results of Ref5]. damping cpefﬂment to account for molasses frlct|on.' With
In addition to the so-called “good-cavity” regime in which the exception of the stochastic forég(t ), these equations
the experiment of Ref[5] operates, we also examine the are similar to the ones used by Bonifacio and Verkai to
behavior of the system in the “bad-cavity” regime. We showdescribe CARL including the effect of collisions.
that in this regime the atoms emit in a superfluorescent way Here, the stochastic forcE(t) causes diffusion of the
[11], with scattered intensityN?, whereN is the number of ~atomic momenta, i.e., heating. We assume white noise, i.e.,

atoms. This is a unique example of a steady-state superflugF;(t)F;.(t'))=2D,8 (t—t')s;,, whereD,=yo 2 is the mo-

where j=1,... N, t=wpt, 6,=2kz, pj=2kv,/ w;p, and A
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mentum diffusion coefficient ana is the momentum spread 31

in units of w,p, corresponding to the Doppler temperatire

of the atoms in the molasses fields.

In the limit of strong viscous damping, it is possible to

adiabatically eliminate the atomic momentum for each atom 2

by settingdp;/d t=0 in Eq.(2), so that
_ 1 Fi0) Q
pj=-=(A€’i+c.c)+—. (4) i

Y Y
Before discussing the full model including diffusion, let us
consider the simple steady-state solution neglecting the sto-

chastic forceF. Assuming perfect bunching, i.e{e™% 0 : i .
~e (% Egs.(3) and(4) yield [5] 0 1 2 3
. K
A )
a= — (p)=- , 5 . . . .

K —i{p) K2+<p)2 areI;)IG. 1. Region of instability as a function of and D (gray
where we have normalized all the variables in or(;J_Er to re-
duce the number of free parameters, definamgA/ vy, p In the following, we will show that diffusion is respon-
=Vyp=do/dr, T=t/\y, and k=VyK. In the following we  sjble for the existence of a definite threshold for the steady-
will use these scaled variables and parameters. state solution, for which in general the bunching fadids

From Eqgs.(5) we can identify two different steady-state |ess than 1.

regimes for CARL: whenc<1 (good-cavity limiy, we ob- The system of Eqe8) and (9) have a steady-state solu-

tain |(p)| = (2x)*> « and [a?~ (2x)"2". From the defini-  tion with a®=0 andB®=0 for n+0. If we linearize Egs.

tions of x anda, it follows that the scattered light pow®;  (8) and(9) around this steady state, we find that fluctuations

is proportional toN*? as in the usual CARL1-3. Con-  of a and B, grow exponentiallyxexp(\7) if the dispersion

versely, fork>1 (bad-cavity limi) we obtain|(p)|<« and  (glation

|a]>~1/«?, so that the scattered powBf is proportional to

N?, i.e., issuperfluorescent N+ x)(N+D) =i (10)
Diffusion can be described, in the adiabatic limit of Eq.

(4), writing a Fokker-Planck equation for the distribution

function P(6,7) [13,14. Together with Eq(3), our model

becomes

has roots with positive real parts. The real and imaginary
parts of the unstable mode of E4.0) gives the gairG and

the frequency shifdw in the exponential regime, that, in
units of the cavity bandwidtlk,, are

aP 49 . PP —

—=—/[(a€’+c.c)P]+D—, 6 24 4

Pl JP1+ D=5 (6) g:Rex:;l /C+\1+C_K+D:|’ 1
K¢ K K 2 2

da 27 i
E- = P(G, T)e "Y'do- Ka, (7) Aw Im\ 1 1 (12)
0 — == Y=,
K¢ K V2k| V1 +C4+C?

where D=\3D,=02/\y= T(A2/ ;NP2 and D,= o2/ is
the space diffusion coefficient. The distribution function where C=(x—D)/2. The threshold condition for instability
is normalized such thafs™ P(6,7dé=1 and is periodic in  (G=0) gives rise to the following relation betwearandD:

6 with period 27. Hence Eqs(6) and(7) can be written in

terms of the spatial harmonics d®6,7), i.e., P(6,7 «kD(D + k)< 1. (13
— oo i — (27 —i
=(1/2m)Z5- . By(n)€M’, where By(n)=[5" P(6, e’ df, Figure 1 shows the regions of parameter spac®) for
so that which Eq. (13) predicts unstable growth of the probe field
dB, and the atomic density modulation.
O in(aB,_; + a*By,1) — n°DB,, (8) We note that the frequency shift at threshgilé., G=0)
T is, from Eqgs.(11)~(13),
da A D
—2=B, - xa. 9) S \/j . (14)
dr Ke K
We note thatB_,=B; and By=1. In particular, b=|B,]| The accessible parameters in the experiment of Kaise

=|(e”"%)| is the bunching factor, describing the ampitude ofal. [5] are the pump power and the CARL frequency. The
the density grating. Moreover, from E®) it follows that ~ minimum measured value of the frequency shift was
the average momentum {p)=-2 Re€aB;). Awl/k.~4.6. Assuming that it corresponds to the threshold
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3 10 - - dition Eq. (13) becomes simphD < «~3, and the frequency
(a) 08, (b) | shift at threshold is approximatelyw/ k.~ 2~ D??3. Con-
5] sequently the threshold pump power in the superfluorescent
061 1 regime scales as
[3\]
@© 4] 19 04 1 TU2N2, L2, 112
0.2 Py —N . (16)
% 100 200 0 0% 100 200 300 Note that the dependence of threshold pump power on tem-

perature is now<T2 in the bad-cavity limit, as opposed to
«T%2 in the good-cavity limit. The dependence hinand A
is the same as that for the good-cavity limit. Note that the
frequency shift at threshold scales@B/ (ys«.) in both lim-
] its.
The numerical integration of Eq§3) and(9) shows that
] ] ] the system evolves toward the stationary solution aith
=a€®” (Where w=d¢/dr is the scaled frequency shifand
B¥=8,€"*", wherea and 8, are complex constants. As a
consequence, the density distribution moves at a constant
velocity, P(8, )=P®(6+w7). We note that at steady state
T 0 the average momentum {p)=-2«b?/(k’+w?), where the
. . bunching parameter ib=|g;|. Comparing with Eq.(5), it
FIG. 2. Graph offa? (a), b (b), o/« (continuous ling and  fo|16\s that in the case of perfect bunchifig=1) w=—(p).
~{p)/ « (dotted ling (c), vs 7 and of the stationary distributioR(6) Figure 2 shows the evolution of the backscattered scaled in-
vs 6(d. tensity|al? (a), and the bunching (b) as a function of scaled
) ) time 7 for parameters close to those of the experiment by
value of the frequency shift, then, using E¢3) and(14)  Kkryseet al, i.e., D=1.49, andk=0.075. The instability was
we calculate that the values afand D at threshold arec initiated using a seed fieldy=1075.
~0.1 andD~2.1. The experiment of Ref5] can therefore It can be seen that the field intensity and the bunching
be described using the good cavity limit where<1. In this  jncrease exponentially before relaxing to a steady state. This
limit, the threshold condition Eq(13) becomes simplyD s the same qualitative behavior as observed in the experi-
= «~*%, and the frequency shift at threshold is approximatelyment[5]. Figure 2c) shows also the time evolution of the
Awl k.= k™?*~D? Using the definition ofx, the threshold  frequency shiftAw/«.=w/x (continuous ling and of the
value k=0.1 can be expr_essed as a threshold conditipn fokcaled mean velocityk2v,)/ k.=(p)/ x (dashed ling We ob-
the pump power. Assuming the same parameters as in Refgrye that the atomic mean velocity at steady state does not
[3], i-e., kc=(2m)22 KHz, y1=9x. and T~150 uK, we ob-  qqincide with the velocity of the optical standing wave, i.e.,
tain a_CARL p_arametep:14.6 at thresholc_j, corresponding —(p)# w, as occurs in the case of perfect bunchimgl.
to an intracavity pump power dfo~3 W, in good agree-  gina)iy Fig. 2d) shows the stationary distributid®(6) vs 6,
ment with the experimental value. showing the density grating profile.

The linear analysis can provide us with important infor- Th :
: : . . e steady-state solution of Eq8) and(9) may be ob-
mation on the scaling behavior of the threshold input pump_ : : ion &
power and the frequency shift at threshold. Using the gooc&amed solving the following recurrence equation fé

cavity limit conditionD < «™® and the scaling oD and «, (0 -iND)B,= aBy + & Bows, 17)
the intracavity pump power scales as

-<p>/K, 0/K
i T A DI

100 200

o

wheren+# 0 anda=4;/(k+iw). Calculatingg; in terms of a

T8/272,112 continued fraction and iterating numerically the solution in
Pg o TZC (15  order to findw, the stationary solution can be obtained ex-
N7 actly. As an example, Fig.(8) shows the steady-state bunch-

It is also worthwhile to investigate the scaling behavior ofing b (continuous lingand Fig. 3b) shows <p)/ « (continu-
the threshold pump power and the frequency shift at threshous 1in@ and w/ x (dashed lingas a function ofD and for
old in the superfluorescent regimes>1. Although to date «=0.1. Weobserve that the bunching parameltiegoes to
there have been no experimental studies which operate i#ero at the threshold valuBy,=2.1, and thefrequency
this regime, we can use our model to predict the behavior oshift at threshold isv=4.6«, in agreement with the results
such an experiment. It should be noted that from an inspec@f the linear theory. We note from Fig.(l3 that <p)
tion of the region of instability shown in Fig. 1, in order to =~ w only well above threshold, wheD <Dy,.
operate in the superfluorescent regiama remain above the In the experiment of Ref5], the pump power is ramped
threshold for instability, it is necessary to increase scaledip and down, while the frequency shift/ « is monitored.
cavity lossesc and decrease the scaled diffusion or temperaThe ramp can be designed in such a way that the pump
ture parameteD. In the bad-cavity limit the threshold con- power crosses the threshold valBg so that we expect that
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FIG. 3. (a) Steady-state solution fob (continuous ling (b)
Steady-state solution fas/ k (dashed lingand <p)/ « (continuous
line), as a function oD for «=0.1.

FIG. 4. Graph of frequency shitb/x (a) and scattered power
|aj? (b) as a function ofPy/ P, for x.=(2m)22 kHz, y;=9., and
T=150 uK.

the signal of powelPg of the scattered light beam has the : : . .
dependencies shown in Fig. 4. This behavior seems to be iﬁrﬁt Ig?uedgiﬁlﬁf)ﬁitéﬁﬁd,,fgfllglvaegdtoaéogé%gegts;% quggrl]?rtgsrt'
agreement with preliminary experimental results, to be dis; ph ; gb havi b dy e h |
cussed elsewhefd0] to the nonstationary behavior observed using the usua
| USi : h ted del of th ARL model. We suggest to test our model experimentally
h conclusion, we have presented a moadel of e TECeM o in the linear regime by searching for a threshold and
experiments by Kruset al. [5] showing collective back-

. . . characterizing its dependence from the coupling parameter
scattering of an optical pump field by a sample of cold at-5n4 from temperature, as in the nonlinear regime. The ex-
oms. The model used is an adaptation of the CARL modeperiment currently operates in the so-called good-cavity re-
which includes the effects of friction and diffusion forces gime [5]. We furthermore propose to tune the experiment

acting on the atoms due to the presence of optical molassgsyo the bad-cavity regime in which the atoms scatter super-
fields. Using this model, we show that the system can b?luorescently with scattered intensigN>.

described by a system of coupled Maxwell-Fokker-Planck

equations. It was shown using a linear stability analysis that The authors G.R.M.R., N.P., and R.B. would like to ac-
there is a threshold condition above which collective backknowledge support from the Royal Society of London via a
scattering occurs. Using a nonlinear analysis it was showiuropean Science Exchange Joint Project.
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